irreducible fracture - определение. Что такое irreducible fracture
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое irreducible fracture - определение

ONE CASE WHEN SOLVING A CUBIC EQUATION
Irreducible Case; Irreducible Case (cubic); Irreducible cubic

Bennett's fracture         
  • Bennett's fracture
  • Bennett's fracture repair
FRACTURE OF THE BASE OF THE FIRST METACARPAL BONE
Bennet fracture; Bennet's fracture; Bennetts fracture; Bennett fracture
Bennett fracture is a type of partial broken finger involving the base of the thumb, and extends into the carpometacarpal (CMC) joint.
Pathologic fracture         
  • Juvenile osteoporosis
BONE FRACTURE CAUSED BY WEAKNESS OF THE BONE STRUCTURE
Fragility fracture; Fragility fractures; Pathological fracture; Insufficiency fracture; Osteoporotic fracture; Pathological bone fracture
A pathologic fracture is a bone fracture caused by weakness of the bone structure that leads to decrease mechanical resistance to normal mechanical loads. This process is most commonly due to osteoporosis, but may also be due to other pathologies such as cancer, infection (such as osteomyelitis), inherited bone disorders, or a bone cyst.
Chauffeur's fracture         
FRACTURE OF THE RADIAL STYLOID PROCESS
Hutchinson fracture; Backfire fracture
Chauffeur's fracture, also known as Hutchinson fracture, is a type of oblique fracture of the radial styloid process in the forearm. The injury is typically caused by compression of the scaphoid bone of the hand against the styloid process of the distal radius.

Википедия

Casus irreducibilis

In algebra, casus irreducibilis (Latin for "the irreducible case") is one of the cases that may arise in solving polynomials of degree 3 or higher with integer coefficients algebraically (as opposed to numerically), i.e., by obtaining roots that are expressed with radicals. It shows that many algebraic numbers are real-valued but cannot be expressed in radicals without introducing complex numbers. The most notable occurrence of casus irreducibilis is in the case of cubic polynomials that have three real roots, which was proven by Pierre Wantzel in 1843. One can see whether a given cubic polynomial is in so-called casus irreducibilis by looking at the discriminant, via Cardano's formula.